Chase Joyner

801 Homework 1
September 3, 2015

Problem A.11:

Let A and B be the matrices

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Find $C(A)^{\perp}$ and $C(B)^{\perp}$ with respect to \mathbb{R}^{4}.
Solution: The basis for the column space of A is given by the three vectors

$$
a_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad a_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right], \quad a_{3}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Then, $x \in C(A)^{\perp}$ must satisfy $a_{i}^{T} x=0$ for $i=1,2,3$. For $i=1$,

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=0
$$

implies that $x_{1}=-x_{2}$. For $i=3$,

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=0
$$

implies that $x_{4}=0$. Thus, for $i=2$ we have $x_{3}=0$. Thus,

$$
C(A)^{\perp}=\left\{\left[\begin{array}{c}
a \\
-a \\
0 \\
0
\end{array}\right]: a \in \mathbb{R}\right\}
$$

Repeating the procedure that we did for matrix A, we see that $C(B)^{\perp}=C(A)^{\perp}$.

Problem A.14:

Find an orthogonal basis for the space spanned by the columns of

$$
X=\left[\begin{array}{lll}
1 & 1 & 4 \\
1 & 2 & 1 \\
1 & 3 & 0 \\
1 & 4 & 0 \\
1 & 5 & 1 \\
1 & 6 & 4
\end{array}\right] .
$$

Solution: To find an orthogonal basis for $C(X)$, we use Gram-Schmidt without normalizing. Let the columns of X be x_{1}, x_{2}, and x_{3} so that $X=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$. Let $y_{1}=x_{1}$. Then, we find y_{2} to be

$$
y_{2}=x_{2}-\frac{\left\langle x_{2}, y_{1}\right\rangle}{\left\langle y_{1}, y_{1}\right\rangle} y_{1}=x_{2}-\frac{21}{6} y_{1}=\left[\begin{array}{c}
-5 / 2 \\
-3 / 2 \\
-1 / 2 \\
1 / 2 \\
3 / 2 \\
5 / 2
\end{array}\right] \text {. }
$$

Next, we see that y_{3} is

$$
y_{3}=x_{3}-\frac{\left\langle x_{3}, y_{1}\right\rangle}{\left\langle y_{1}, y_{1}\right\rangle} y_{1}-\frac{\left\langle x_{3}, y_{2}\right\rangle}{\left\langle y_{2}, y_{2}\right\rangle} y_{2}=x_{3}-\frac{10}{6} y_{1}-\frac{0}{35 / 2} y_{2}=\left[\begin{array}{c}
14 / 6 \\
-4 / 6 \\
-10 / 6 \\
-10 / 6 \\
-4 / 6 \\
14 / 6
\end{array}\right] \text {. }
$$

Calculating the dot product for y_{i}, y_{j} for $i \neq j$ yields 0 . Therefore, by Gram-Schmidt, an orthogonal basis for $C(X)$ is $B=\left\{y_{1}, y_{2}, y_{3}\right\}$.

Problem A.16:

Let X be an $n \times p$ matrix. Prove or disprove the following statement: Every vector in \mathbb{R}^{n} is in either $C(X)$ or $C(X)^{\perp}$ or both.

Solution: We will provide a counterexample to the statement. Let $n=2$ and

$$
X=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Then, we easily see that

$$
\begin{aligned}
C(X) & =\left\{\left[\begin{array}{l}
a \\
0
\end{array}\right]: a \in \mathbb{R}\right\} \\
C(X)^{\perp} & =\left\{\left[\begin{array}{l}
0 \\
a
\end{array}\right]: a \in \mathbb{R}\right\} .
\end{aligned}
$$

However, for the vector $(1,1)^{\prime} \in \mathbb{R}^{2}$, it is not in $C(X)$ nor $C(X)^{\perp}$.

Problem B.11:

Let A, B, and C be the following matrices:

$$
A=\left[\begin{array}{ccc}
2 & 0 & 4 \\
1 & 5 & 7 \\
1 & -5 & -3
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad C=\left[\begin{array}{ccc}
1 & 4 & 1 \\
2 & 5 & 1 \\
-3 & 0 & 1
\end{array}\right]
$$

Use Theorem B.35: Let o_{1}, \ldots, o_{r} be an orthonormal basis for $C(X)$, and let $O=\left[o_{1}, \ldots, o_{r}\right]$. Then $O O^{\prime}=\sum_{i=1}^{r} o_{i} o_{i}^{\prime}$ is the perpendicular projection operator onto $C(X)$., to find the perpendicular projection operator onto the column space of each matrix.

Solution: First note that $\operatorname{dim}(C(A))=2$, $\operatorname{dim}(C(B))=3$, and $\operatorname{dim}(C(C))=2$. Denote a_{1}, a_{2}, a_{3} as the columns of A, b_{1}, b_{2}, b_{3} as the columns of B, and c_{1}, c_{2}, c_{3} as the columns of C. We first need to find an orthonormal basis $\mathcal{B}_{A}, \mathcal{B}_{B}$, and \mathcal{B}_{C} for $C(A), C(B)$, and $C(C)$, respectively; use Gram-schmidt to do this. By Gram-Schmidt, we let the first element of each basis be

$$
\begin{aligned}
& b a_{1}=\frac{a_{1}}{\left\|a_{1}\right\|}=\frac{1}{\sqrt{6}} a_{1}=\left[\begin{array}{l}
2 / \sqrt{6} \\
1 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right] \\
& b b_{1}=\frac{b_{1}}{\left\|b_{1}\right\|}=b_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& b c_{1}=\frac{c_{1}}{\left\|c_{1}\right\|}=\frac{1}{\sqrt{14}} c_{1}=\left[\begin{array}{c}
1 / \sqrt{14} \\
2 / \sqrt{14} \\
-3 / \sqrt{14}
\end{array}\right] .
\end{aligned}
$$

We calculate the following vectors

$$
\begin{aligned}
& u a_{2}=a_{2}-\frac{\left\langle a_{2}, a_{1}\right\rangle}{\left\langle a_{1}, a_{1}\right\rangle} a_{1}=a_{2}-\frac{0}{6} a_{1}=\left[\begin{array}{c}
0 \\
5 \\
-5
\end{array}\right] \\
& u b_{2}=b_{2}-\frac{\left\langle b_{2}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}=b_{2}-\frac{0}{1} b_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& u c_{2}=c_{2}-\frac{\left\langle c_{2}, c_{1}\right\rangle}{\left\langle c_{1}, c_{1}\right\rangle} c_{1}=c_{2}-\frac{14}{14} c_{1}=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right] .
\end{aligned}
$$

Then, normalizing these, we have the second element of each basis to be

$$
\begin{aligned}
& b a_{2}=\frac{u a_{2}}{\left\|u a_{2}\right\|}=\frac{1}{\sqrt{50}} u a_{2}=\left[\begin{array}{c}
0 \\
5 / \sqrt{50} \\
-5 / \sqrt{50}
\end{array}\right] \\
& b b_{2}=\frac{u b_{2}}{\left\|u b_{2}\right\|}=\frac{1}{1} u b_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& b c_{2}=\frac{u c_{2}}{\left\|u c_{2}\right\|}=\frac{1}{\sqrt{27}} u c_{2}=\left[\begin{array}{l}
3 / \sqrt{27} \\
3 / \sqrt{27} \\
3 / \sqrt{27}
\end{array}\right] .
\end{aligned}
$$

We calculate the following vectors

$$
\begin{aligned}
& u a_{3}=a_{3}-\frac{\left\langle a_{3}, a_{1}\right\rangle}{\left\langle a_{1}, a_{1}\right\rangle} a_{1}-\frac{\left\langle a_{3}, u a_{2}\right\rangle}{\left\langle u a_{2}, u a_{2}\right\rangle} u a_{2}=a_{3}-\frac{12}{6} a_{1}-\frac{50}{50} u a_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& u b_{3}=b_{3}-\frac{\left\langle b_{3}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\frac{\left\langle b_{3}, u b_{2}\right\rangle}{\left\langle u b_{2}, u b_{2}\right\rangle} u b_{2}=b_{3}-\frac{0}{1} b_{1}-\frac{0}{1} u b_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& u c_{3}=c_{3}-\frac{\left\langle c_{3}, c_{1}\right\rangle}{\left\langle c_{1}, c_{1}\right\rangle} c_{1}-\frac{\left\langle c_{3}, u c_{2}\right\rangle}{\left\langle u c_{2}, u c_{2}\right\rangle} u c_{2}=c_{3}-\frac{0}{14} c_{1}-\frac{9}{27} u c_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

Notice that $u a_{3}$ and $u c_{3}$ are the zero vector, which makes sense because the dimensions of $C(A)$ and $C(C)$ are both 2. Lastly, since $\left\|u b_{3}\right\|=1$, we have $b_{3}=u b_{3}$. Therefore, we have

$$
\begin{aligned}
& \mathcal{B}_{A}=\left\{\left[\begin{array}{l}
2 / \sqrt{6} \\
1 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right],\left[\begin{array}{c}
0 \\
5 / \sqrt{50} \\
-5 / \sqrt{50}
\end{array}\right]\right\} \\
& \mathcal{B}_{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \\
& \mathcal{B}_{C}=\left\{\left[\begin{array}{l}
1 / \sqrt{14} \\
2 / \sqrt{14} \\
-3 / \sqrt{14}
\end{array}\right],\left[\begin{array}{l}
3 / \sqrt{27} \\
3 / \sqrt{27} \\
3 / \sqrt{27}
\end{array}\right]\right\}
\end{aligned}
$$

are orthonormal bases for $C(A), C(B)$, and $C(C)$, respectively. Now let

$$
O_{A}=\left[\begin{array}{cc}
2 / \sqrt{6} & 0 \\
1 / \sqrt{6} & 5 / \sqrt{50} \\
1 / \sqrt{6} & -5 / \sqrt{50}
\end{array}\right], \quad O_{B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad O_{C}=\left[\begin{array}{cc}
1 / \sqrt{14} & 3 / \sqrt{27} \\
2 / \sqrt{14} & 3 / \sqrt{27} \\
-3 / \sqrt{14} & 3 / \sqrt{27}
\end{array}\right],
$$

to find the perpendicular projection operators

$$
O_{A} O_{A}^{\prime}=\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 2 / 3 & -1 / 3 \\
1 / 3 & -1 / 3 & 2 / 3
\end{array}\right], O_{B} O_{B}^{\prime}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], O_{C} O_{C}^{\prime}=\left[\begin{array}{ccc}
17 / 42 & 10 / 21 & 5 / 42 \\
10 / 21 & 1 / 2 & -2 / 21 \\
5 / 42 & -2 / 21 & 41 / 42
\end{array}\right]
$$

onto the column spaces of $C(A), C(B)$, and $C(C)$, respectively, by Theorem B. 35 .

Problem B.12:

Show that for a perpendicular projection matrix M,

$$
\sum_{i} \sum_{j} m_{i j}^{2}=r(M) .
$$

Solution: Assume that M is an $n \times n$ matrix. Note that since M is a perpendicular projection matrix, it is idempotent and $M=M^{\prime} M=M M^{\prime}$ by problem $B .13$. Because M is idempotent, $r(M)=\operatorname{tr}(M)=\operatorname{tr}\left(M M^{\prime}\right)$. Also, by definition of trace,

$$
\begin{aligned}
r(M)=\operatorname{tr}\left(M M^{\prime}\right) & =\sum_{i=1}^{n}\left(M M^{\prime}\right)_{i i}=\sum_{i=1}^{n} \sum_{j=1}^{n} m_{i j} m_{j i}^{\prime} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} m_{i j} m_{i j}=\sum_{i} \sum_{j} m_{i j}^{2} .
\end{aligned}
$$

This proves the equality.

Problem B.17:

Consider the matrix

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] .
$$

(a) Show that A is a projection matrix.

Solution: Note that

$$
C(A)=\left\{\left[\begin{array}{l}
a \\
a
\end{array}\right]: a \in \mathbb{R}\right\} .
$$

Also, for any $x=\left(x_{1}, x_{2}\right)^{\prime}$, we have $A x=\left(x_{2}, x_{2}\right)^{\prime} \in C(A)$. Therefore, A is a projection matrix onto $C(A)$.
(b) Is A a perpendicular projection matrix? Why or why not?

Solution: Note that for A to be a perpendicular projection matrix, it must be symmetric by Theorem B.33. However, $A \neq A^{\prime}$ and therefore is not symmetric. So, A is not a perpendicular projection matrix.
(c) Describe the space that A projects onto and the space that A projects along. Sketch these spaces.

Solution: The matrix A projects onto $C(A)$ which was found in part (a). Thus, we see that A projects onto the line $y=x$. Also, A projects along the space $N(A)$, which is given by

$$
N(A)=\left\{\left[\begin{array}{l}
a \\
0
\end{array}\right]: a \in \mathbb{R}\right\} .
$$

Therefore, A projects along the x-axis.
(d) Find another projection operator onto the space that A projects onto.

Solution: Another simple projection matrix onto $C(A)$ would be the matrix

$$
B=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

Therefore, for $x \in C(A), B x=x$.

Problem B.10:

Show that the matrix B given below is positive definite, and find a matrix Q such that $B=Q Q^{\prime}$. (Hint: The first row of Q can be taken as $(1,-1,0)$.)

$$
B=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

Solution: First we show that B is positive definite by appealing tot he definition. So,

$$
\begin{aligned}
x^{\prime} B x & =\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{c}
2 x_{1}-x_{2}+x_{3} \\
-x_{1}+x_{2} \\
x_{1}+2 x_{3}
\end{array}\right] \\
& =2 x_{1}^{2}-x_{1} x_{2}+x_{1} x_{3}-x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+2 x_{3}^{2} \\
& =2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{1} x_{3}+x_{2}^{2}+2 x_{3}^{2} \\
& =x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+2 x_{1} x_{3}+2 x_{3}^{2} \\
& =\left(x_{1}+x_{3}\right)^{2}+\left(x_{1}-x_{2}\right)^{2}+x_{3}^{2} \\
& >0 .
\end{aligned}
$$

Therefore, B is positive definite. To find Q, we solve the system

$$
B=\left[\begin{array}{ccc}
1 & -1 & 0 \\
x_{1} & x_{2} & x_{3} \\
x_{4} & x_{5} & x_{6}
\end{array}\right]\left[\begin{array}{ccc}
1 & x_{1} & x_{4} \\
-1 & x_{2} & x_{5} \\
0 & x_{3} & x_{6}
\end{array}\right] .
$$

This implies the following equations

$$
\begin{aligned}
x_{1}-x_{2} & =-1 \\
x_{4}-x_{5} & =1 \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2} & =1 \\
x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6} & =1 \\
x_{4}^{2}+x_{5}^{2}+x_{6}^{2} & =2 .
\end{aligned}
$$

We have 6 unknowns, but only 5 equations. Let $x_{5}=0$. Then $x_{4}=1$. Now we're left with

$$
\begin{aligned}
x_{1}-x_{2} & =-1 \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2} & =1 \\
x_{1}+x_{3} x_{6} & =1 \\
1+x_{6}^{2} & =2 .
\end{aligned}
$$

So, we have that $x_{6}= \pm 1$. Take x_{6} to be 1 . Lastly, we solve

$$
\begin{aligned}
x_{1}-x_{2} & =-1 \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2} & =1 \\
x_{1}+x_{3} & =1 .
\end{aligned}
$$

Take $x_{1}=0$ and so $x_{2}=1$, which gives that $x_{3}=1$. Therefore, Q is the matrix

$$
Q=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Multiplying $Q Q^{\prime}$ gives that $B=Q Q^{\prime}$. Therefore, we have found Q.

Problem B.13:

Prove that if $M=M^{\prime} M$, then $M=M^{\prime}$ and $M=M^{2}$.
Solution: Let $M=M^{\prime} M$. Then, we have $M^{\prime}=\left(M^{\prime} M\right)^{\prime}=M^{\prime} M=M$. It follows that $M=M^{\prime} M=M M=M^{2}$.

